

- <u>Next homework is #7– due Friday at 11:50</u> <u>am– last one before exam.</u>
- Exam #2 is less than two weeks! Friday, November 14th!
- Don't forget the Icko Iben Lecture is tonight!

Want some extra credit?

- Download and print report form from course web site
- Attend the Iben Lecture on November 5th
- Obtain my signature before the lecture and answer the questions on form. Turn in by Nov. 14th
- Worth 12 points (1/2 a homework)

Icko Iben, Jr. Distinguished Lecture

Department of Astronomy at the University of Illinois

Cosmic Collisions: How Astronomers are Saving the World

David Morrison Senior Scientist NASA Astrobiology Institute

Foellinger Auditorium Wednesday, November 5, 2003 4:00 pm (Doors open at 3:30 pm)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Outline

- The end of a low mass star (like our Sun)
 - Main sequence, red giant, helium flash, and planetary nebula and white dwarf
- End of an intermediate mass stars
 - Main sequence, red supergiant, helium flash, blue supergaint, red supergiant, and planetary nebula and white dwarf.
- The end of a massive star

Evolutionary Path of a Solar-Mass Star

Nov 5, 2003

The Life of a 1 Solar Mass Star: $0.4 \ M_{Sun} < \ M \ < 4 \ M_{Sun}$

Example of how low mass stars will evolve on the HR Diagram–

http://rainman.astro.uiuc.edu/ddr/stellar/archive/suntr ackson.mpg

A Low Mass Stellar Demise

red giant

planetary nebula

White Dwarfs and Planetary Nebulae

- Outer layers of the red giant star are blown away by radiation from the hot new white dwarf– loses from 20 to more than 50% of its mass
- As they expand, they are lit from within by the white dwarf

Astronomy 100 Fall 2003 NGC 2440

Electron Degeneracy

Matter in the core of a normal star

Electron-degenerate matter in a white dwarf *1 ton per cubic cm*

Degeneracy Pressure Before: After:

- Electrons are forced into higher energy levels than normal – all of the lower levels are taken
- "Normal" parking lot with "Degenerate" parking lot with plenty of spaces. Car is in no hurry. few spaces. Cars race for the spot.

Effect manifests itself as pressure

Relative Size of White Dwarf

White dwarf– but will weigh about 0.7 Solar Masses

Binary Systems?

- In a close binary pair of stars with slightly different mass, the first higher mass low-mass stars evolves into a white dwarf.
- Then later on the other stars evolves into a red giant.
- What happens?

Ì

Novae

- If enough material piles up onto the surface of a white dwarf, can undergo explosive nuclear fusion
- White dwarf blows off this envelope and brightens by 100x – 1000x over a period of days – weeks

Astronomy 100 Fall 2003

Nova Cygni 1992

Novae

- Process often repeats
- Novae are very common, about 20 in our galaxy a year.
- BUT, it is possible that the whole star can explode causing a Type Ia Supernova— too much material exceeds the electron degeneracy (1.4 solar masses)

Example of how 8 stars 1 through 8 solar masses will evolve on the HR Diagram– http://rainman.astro.uiuc.edu/ddr/stellar/archive/onet oeighttrackson.mpg

•

And when the Hydrogen Runs out?

- The more massive stars have convective cores and radiative envelopes, but still very similar to low-mass in the first few stages.
- First the hydrogen is burned in the core- still not hot enough to burn helium
- Then the core starts to shrink a little– hydrogen shell burning (around the inert helium core) starts.
- This stops the collapse, and actually the outer envelope expands quickly becoming a Red Supergiant....but then...

Stellar Demise of a Massive Star

sequence star

red supergiant

phases

supernova

Stellar Evolution for Massive Stars: $M > 8 M_{Sun}$

Example of how a 15 solar mass star will evolve on the HR Diagram–

http://rainman.astro.uiuc.edu/ddr/stellar/archive/high massdeath.mpg

٠

Astronomy 100 Fall 2003

High Mass Stars

- These are very similar to the intermediate mass stars, but as they have more mass, they can "burn" heavier and heavier atoms in the fusion process.
- Until they create Iron– after that it takes energy to produce heavier atoms
- Nothing left!

Stage	Temperature (million K)	Duration
H fusion	40	7 million yr
He fusion	200	500,000 yr
C fusion	600	600 yr
Ne fusion	1,200	1 yr
O fusion	1,500	6 months
Si fusion	2,700	1 day

Game Over!

Supernova Explosions in Recorded History

1054 AD

- Europe: no record
- China: "guest star"
- Anasazi people
 Chaco Canyon, NM: painting

Modern view of this region of the sky: Crab Nebula—remains of a supernova explosion

Supernova Explosions in Recorded History

November 11, 1572 Tycho Brahe

A "new star" ("nova stella")

Modern view (X-rays): remains of a supernova explosion

November 11, 1572 Tycho Brahe

On the 11th day of November in the evening after sunset ... I noticed that a new and unusual star, surpassing the other stars in brilliancy, was shining ... and since I had, from boyhood, known all the stars of the heavens perfectly, it was quite evident to me that there had never been any star in that place of the sky ...

I was so astonished of this sight ... A miracle indeed, one that has never been previously seen before our time, in any age since the beginning of the world.

Nov 5, 2003