

## As you come into class make sure to pick up a Linear Diffraction Grating!



Make sure it says 500 lines/mm.



- <u>Next homework is #6– due Friday at 11:50</u> <u>am.</u>
- <u>There will be another make-up nighttime</u> <u>observing session in November. Stay tuned.</u>

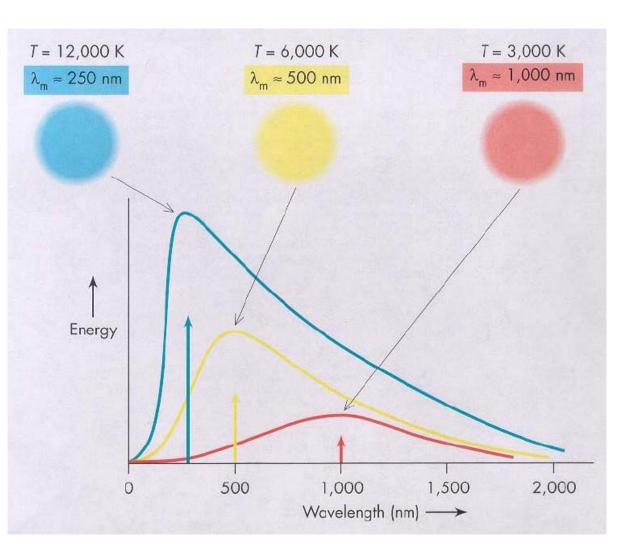
## Outline



- Have we said enough about Blackbody radiation yet?
  - Wein's Law
  - Stephan-Boltzmann Law
- Back to atoms- again
- Quantum mechanical properties of the Atom– things get quantized
- How atoms absorb and emit light– Quantum Leaps
- Looking at atoms emit in class– Voyeurism
- The fingerprints or barcodes of atoms
- The Doppler effect– weeee weee

### The Spectrum of Blackbody Radiation

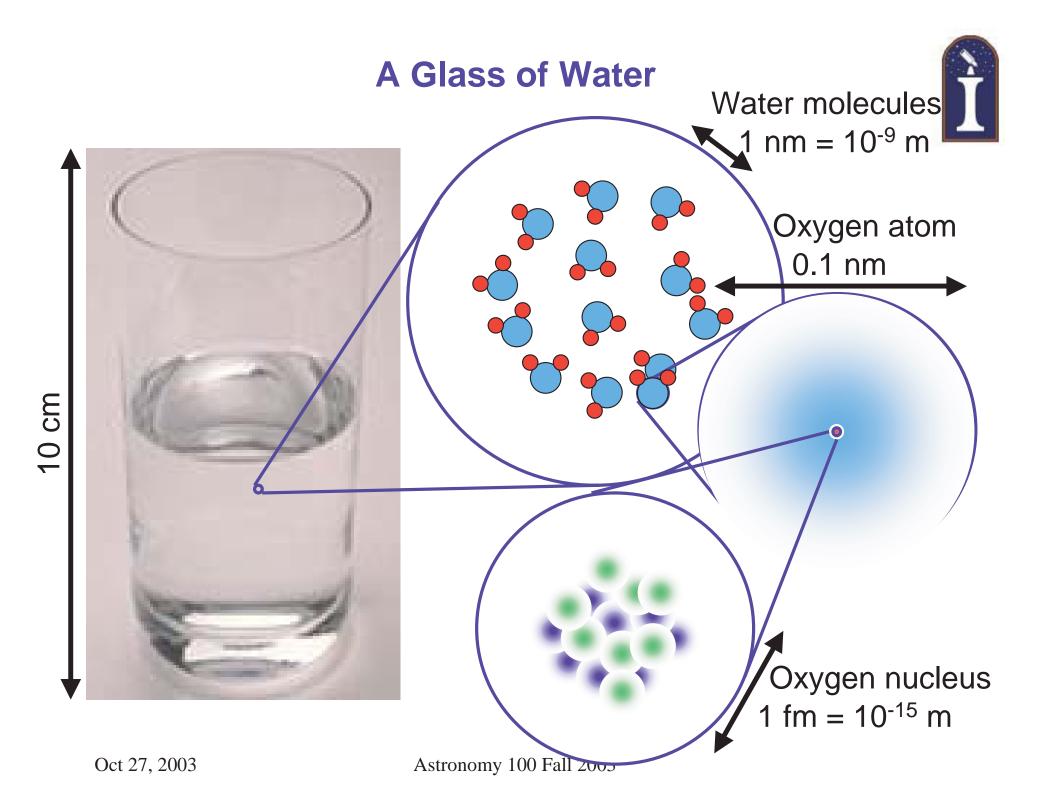



- As temperature increases, peak shifts to shorter wavelengths
- The Sun's spectrum looks almost like a 5800 K blackbody



## Wein's Law




- The peak of the blackbody emission is inversely related to the temperature
- The hotter the object, the stronger it emits light in the shorter wavelengths.
- The Sun's Photosphere is around 5800 K
- Red hot? Or Blue hot? Color of stars?



## Stephan-Boltzmann Law



- For blackbodies, the brightness, or intensity, or output energy, is proportional to T<sup>4</sup> (in Kelvin).
- If a star was the same size as the Sun, but was twice as hot, it would be <u>16 times</u> as bright.



#### **Protons, neutrons, and electrons**



#### Electrons

Negatively charged (charge -1) Lightweight (mass 9.110 x 10<sup>-28</sup> g)



#### Protons

Positively charged (charge +1) 1832 times as massive as an electron (mass  $1.673 \times 10^{-24} \text{ g}$ )



#### **Neutrons**

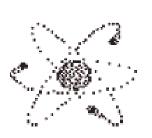
No electric charge A little more massive than a proton (mass  $1.675 \times 10^{-24} \text{ g}$ )

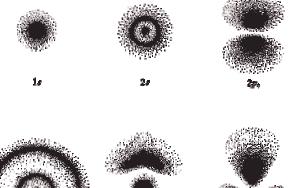
# The Periodic Table of the Elements

| 1<br><b>H</b><br>Hydrogen   |                              |                              |                                   |                             |                                 |                               |                               |                                |                              |                               |                              |                                |                                | A. I                        |                              |                              | 2<br><b>He</b><br>Helium            |
|-----------------------------|------------------------------|------------------------------|-----------------------------------|-----------------------------|---------------------------------|-------------------------------|-------------------------------|--------------------------------|------------------------------|-------------------------------|------------------------------|--------------------------------|--------------------------------|-----------------------------|------------------------------|------------------------------|-------------------------------------|
| 3<br><b>Li</b><br>Lithium   | 4<br><b>Be</b><br>Beryllium  |                              |                                   |                             |                                 |                               |                               |                                |                              |                               |                              | 5<br>B<br>Boron                | 6<br>C<br>Carbon               | 7<br><b>N</b><br>Nitrogen   | 8<br>O<br>Oxygen             | 9<br><b>F</b><br>Fluorine    | 10<br>Ne<br>Neon                    |
| 11<br>Na<br>Sodium          | 12<br><b>Mg</b><br>Magnesium |                              |                                   |                             |                                 |                               |                               |                                |                              |                               |                              | 13<br>Al<br>Aluminum           | 14<br><b>Si</b><br>Sillicon    | 15<br>P<br>Phosphorus       | 16<br><b>S</b><br>Sulfur     | 17<br><b>Cl</b><br>Chlorine  | 18<br><b>Ar</b><br>Argon            |
| 19<br><b>K</b><br>Potassium | 20<br><b>Ca</b><br>Calcium   | 21<br><b>Sc</b><br>Scandium  | 22<br><b>Ti</b><br>Titanium       | 23<br>V<br>Vanadium         | 24<br><b>Cr</b><br>Chromium     | 25<br><b>Mn</b><br>Manganese  | 26<br>Fe<br>Iron              | 27<br><b>Co</b><br>Cobalt      | 28<br><b>Ni</b><br>Nickel    | 29<br>Cu<br>Copper            | 30<br><b>Zn</b><br>Zinc      | 31<br><b>Ga</b><br>Gallium     | 32<br><b>Ge</b><br>Germanium   | 33<br><b>As</b><br>Arsenic  | 34<br><b>Se</b><br>Selenium  | 35<br><b>Br</b><br>Bromine   | 36<br><b>Kr</b><br>Kryton           |
| 37<br><b>Rb</b><br>Rubidium | 38<br><b>Sr</b><br>Strontium | 39<br><b>Y</b><br>Yttrium    | 40<br><b>Zr</b><br>Zirconium      | 41<br><b>Nb</b><br>Niobium  | 42<br>Mo<br>Molybdenum          | 43<br><b>Tc</b><br>Technetium | 44<br><b>Ru</b><br>Ruthenium  | 45<br><b>Rh</b><br>Rhodium     | 46<br><b>Pd</b><br>Palladium | 47<br><b>Ag</b><br>Silver     | 48<br><b>Cd</b><br>Cadmium   | 49<br><b>In</b><br>Indium      | 50<br><b>Sn</b><br>Tin         | 51<br><b>Sb</b><br>Antimony | 52<br><b>Te</b><br>Tellurium | 53<br>I<br>lodine            | 54<br><b>Xe</b><br>Xenon            |
| 55<br><b>Cs</b><br>Cesium   | 56<br><b>Ba</b><br>Barium    | 57<br><b>La</b><br>Lanthanum | 72<br><b>Hf</b><br>Hafnium        | 73<br><b>Ta</b><br>Tantaium | 74<br>W<br>Tungsten             | 75<br><b>Re</b><br>Rhenium    | 76<br><b>Os</b><br>Osmium     | 77<br><b>Ir</b><br>Iridium     | 78<br><b>Pt</b><br>Platinum  | 79<br>Au<br><sub>Gold</sub>   | 80<br><b>Hg</b><br>Mercury   | 81<br><b>TI</b><br>Thallium    | 82<br>Pb<br>Lead               | 83<br><b>Bi</b><br>Bismuth  | 84<br><b>Po</b><br>Polonium  | 85<br><b>At</b><br>Astatine  | 86<br><b>Rn</b><br><sub>Radon</sub> |
| 87<br><b>Fr</b><br>Francium | 88<br><b>Ra</b><br>Radium    | 89<br>Ac<br>Actinium         | 104<br><b>Rf</b><br>Rutherfordium | 105<br><b>Db</b><br>Dubnium | 106<br><b>Sg</b><br>Seaborgium  | 107<br><b>Bh</b><br>Bohrium   | 108<br><b>Hs</b><br>Hassium   | 109<br><b>Mt</b><br>Meitnerium | 110                          | 111                           | 112                          |                                | 114                            |                             | 116                          |                              |                                     |
|                             |                              |                              |                                   |                             |                                 |                               |                               |                                |                              |                               |                              |                                |                                |                             |                              |                              |                                     |
|                             |                              |                              | $\backslash$                      | 58<br><b>Ce</b><br>Cerium   | 59<br><b>Pr</b><br>Praseodymium | 60<br><b>Nd</b><br>Neodymium  | 61<br><b>Pm</b><br>Promethium | 62<br><b>Sm</b><br>Samarium    | 63<br><b>Eu</b><br>Europium  | 64<br><b>Gd</b><br>Gadolinium | 65<br><b>Tb</b><br>Terbium   | 66<br><b>Dy</b><br>Dysprosium  | 67<br><b>Ho</b><br>Holmium     | 68<br><b>Er</b><br>Erbium   | 69<br><b>Tm</b><br>Thulium   | 70<br><b>Yb</b><br>Ytterbium | 71<br><b>Lu</b><br>Lutetium         |
|                             |                              |                              |                                   | 90<br><b>Th</b><br>Thorium  | 91<br><b>Pa</b><br>Protactinium | 92<br>U<br>Uranium            | 93<br><b>Np</b><br>Neptunium  | 94<br><b>Pu</b><br>Plutonium   | 95<br><b>Am</b><br>Americium | 96<br>Cm<br>Curium            | 97<br><b>Bk</b><br>Berkelium | 98<br><b>Cf</b><br>Californium | 99<br><b>Es</b><br>Einsteinium | 100<br><b>Fm</b><br>Fermium | 101<br>Md<br>Mendelevium     | 102<br>No<br>Nobelium        | 103<br>Lr<br>Lawrencium             |

The number of protons in an atom determines the type of element Oct 27, 2003 Astronomy 100 Fall 2003

### Quantum Atoms





At small distances- the size of atoms

- Newton's laws *fail*
- Atoms & light obey *quantum mechanics*

Electron orbits nucleus + electron: like solar system?

- No: in quantum mechanics electrons are not really like a planet. It isn't gravity.
- In atom, the electron acts like wave !?!
- And not all orbits are allowed





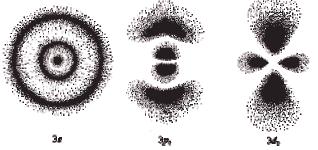
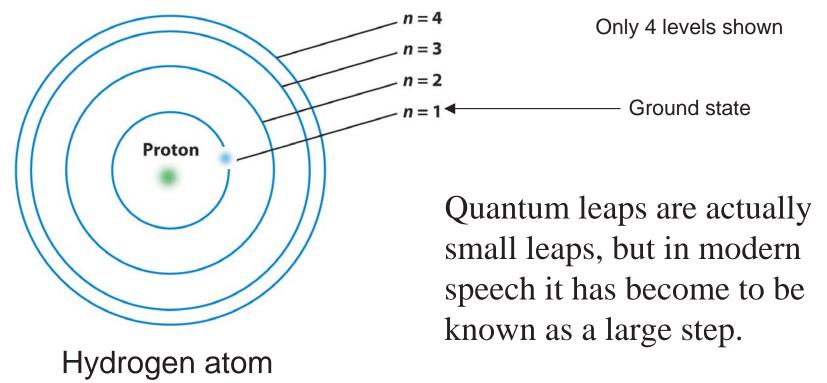



Figure 6-12. Probability density plots of some hydrogen atomic orbitals. The density of the dots represents the probability of finding the electron in that region. © 1983 University Science Books; "Quantum Chemistry" by Donald A. McQuarrie

### **Quantum Atomic Structure**




Allowed orbits

• Lowest energy

energy levels stable orbit

- Closest to nucleus
- Ground state



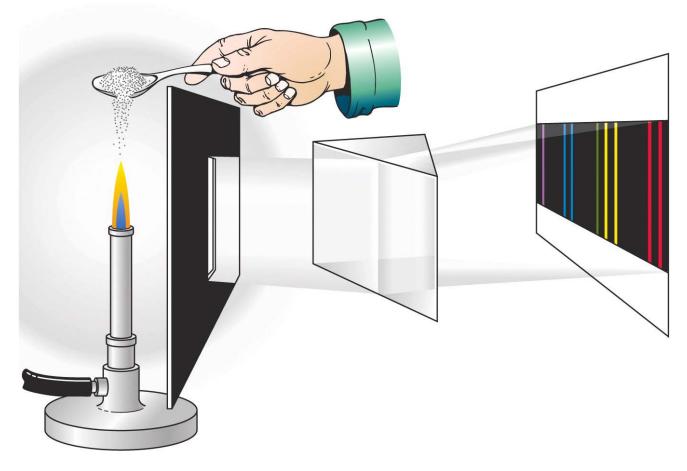
## Question 1



Today, we are going to look at different emissions. What does the heater do?

- 1. Emits a continuous spectrum of light
- 2. Emits discrete colors of light
- 3. Emits only reddish color light

## Question 2



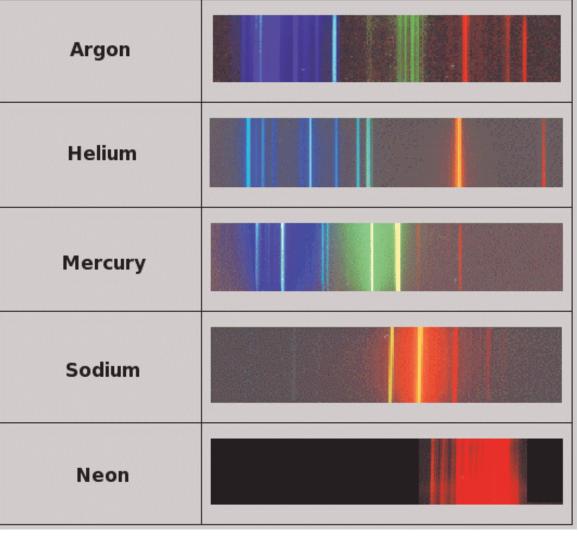

Today, we are going to look at different emissions. What does atom lamps do? These are "Neon" lamps with electrified gas and energized ("excited") atoms.

- 1. Emit a continuous spectrum of light
- 2. Emit discrete colors of light
- 3. Emit only white light

#### **Emission Lines in the Laboratory**

- Spectral lines produced and studied in the laboratory by Robert Bunsen and Gustav Kirchhoff beginning around 1857
- Discovered that burning different chemical elements produced different patterns of lines






### The Spectrum is a fingerprint!



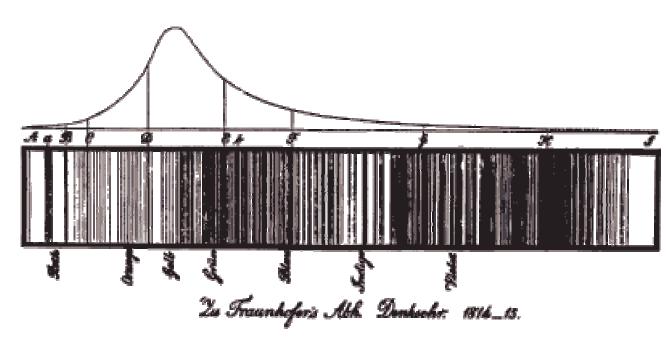
The pattern of spectral lines produced by (or absorbed by) a gas depends on the chemical composition of the gas.





Emission spectrum

Or a barcode!


Oct 27, 2003

Astronomy 100 Fall 2003

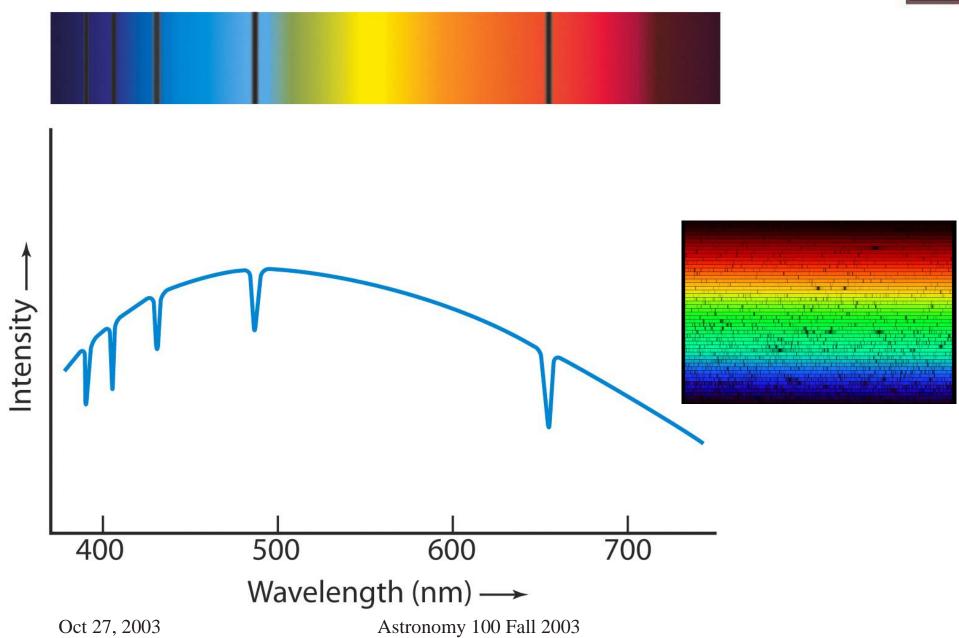
http://www.astro.washington.edu/astro101v

#### **Fraunhofer and Spectral Lines**

Discovered that Sun's spectrum contained narrow gaps (**spectral lines**) when viewed at high resolution (1814)






Joseph von Fraunhofer (1787-1826)



Prism spectrograph

### Absorption Spectrum of the Sun





## Quantum Light: Photons



As we discussed before, just as electrons can sometimes act like waves light can sometimes act like particles– Photons

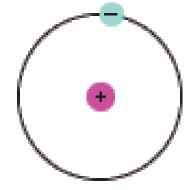
On small scales or low intensities

- Light acts like particle: *"photon"*
- Discrete "packet" of energy"
- Different colors  $\implies$  different energies
- Smaller  $\lambda$ , higher *E*
- These packets of energy can effect the electron in an atom.

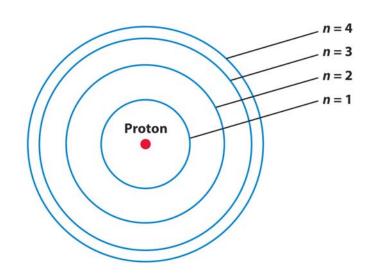
### Light and Atoms

If light hits an atom in ground state and photon energy = atom energy level *exactly* 

- 1. atom absorbs photon
- 2. Electron jumps to higher level
- 3. Atom in "excited" state


But excited = unstable And after time,

- 1. Electron jumps back to ground state
- 2. Emits photon with energy=difference between levels


#### <u>Online demo</u>

#### Atoms absorb/emit light

• atom structure sets energies

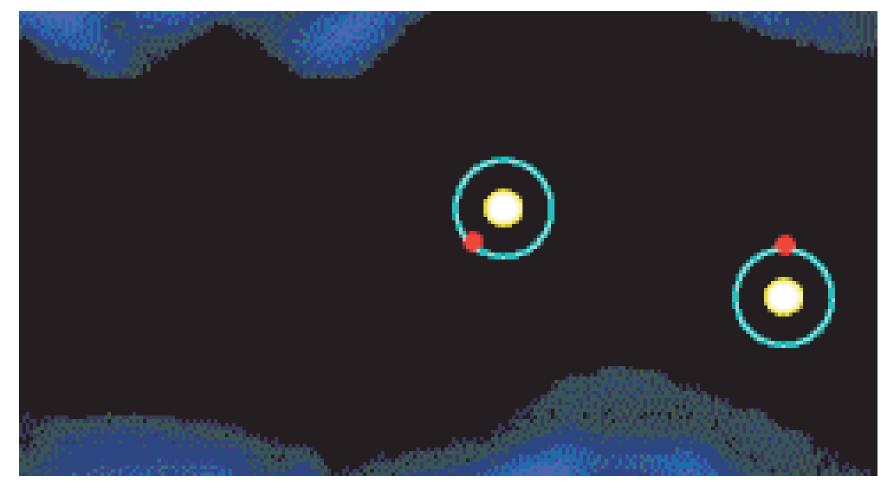


Ground State





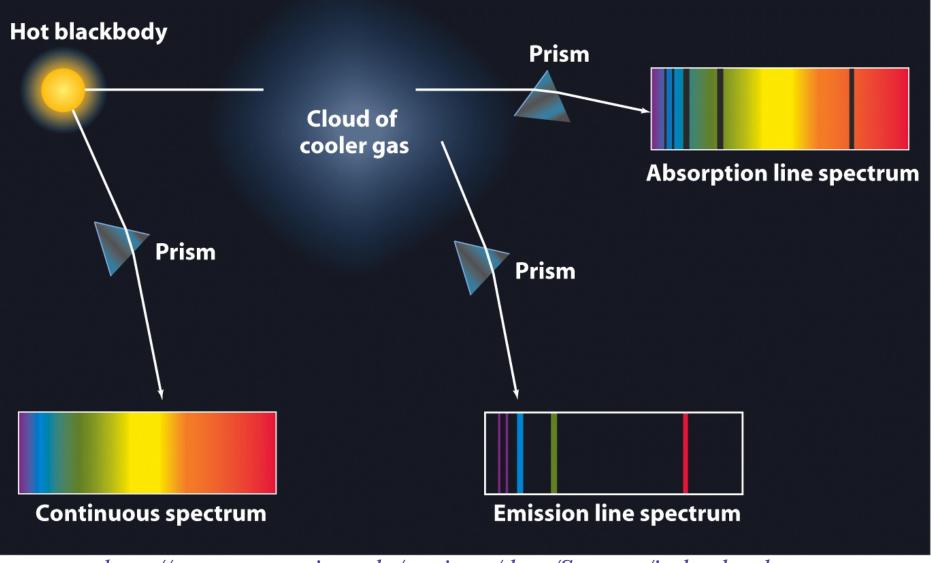
#### Atomic Interpretation of Spectral Lines


- mÌ
- Spectral lines correspond to transitions between levels in an atom
- <u>Absorption</u>: light energy absorbed by atom, electron jumps to higher energy level
- **Emission:** electron spontaneously drops down to lower energy level; releases energy as light



http://ircamera.as.arizona.edu/NatSci102/lectures/spectroscopy.htm Oct 27, 2003 Astronomy 100 Fall 2003

### Collisional Excitation of Atoms


How do atoms get excited in the first place?By absorbing photons; orBy colliding with other atoms



http://ircamera.as.arizona.edu/NatSci102/lectures/spectroscopy.htm Oct 27, 2003



#### **Connection between Lines and Continuous Spectra**



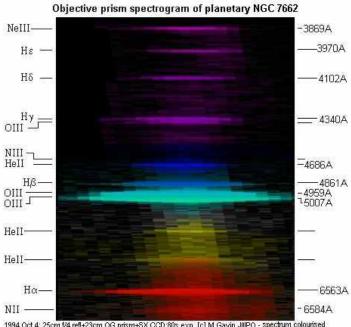
http://www.astro.uiuc.edu/projects/data/Spectra/index.html

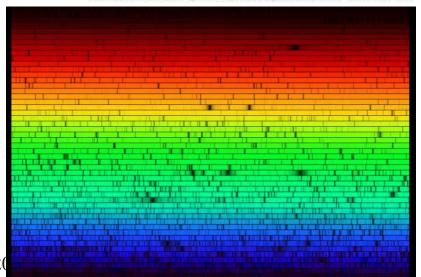
Oct 27, 2003

### Implications: Spectra



Light spectrum gives atom "fingerprint" or "barcode"


So, the spectrum gives atomic composition


Planetary nebula:

- Colors: *lines=elements*
- See newly created material!

Solar spectrum:Dark lines: elementsTells *composition* of Sun

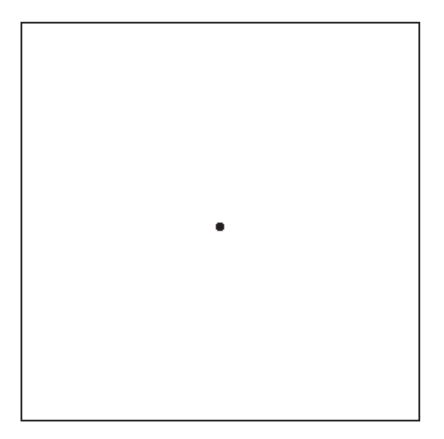


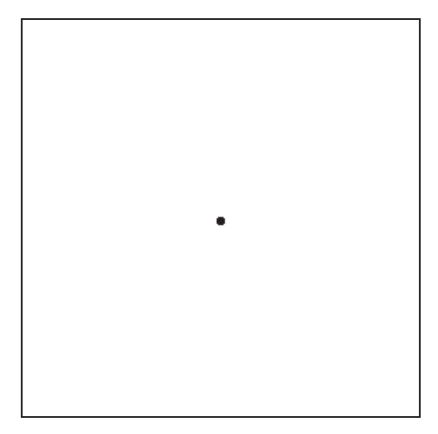




## Doppler Effect




Those of you use to racing events like the Indy 500, or the sound of a police siren, are use to the Doppler effect.

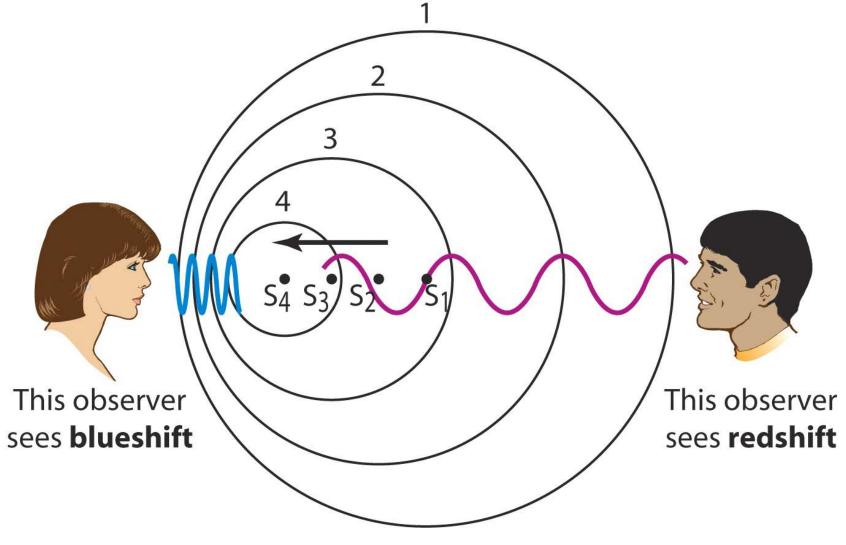



## The Doppler Effect



The effect arises from the relative motion of the observer and the source of light, sound, etc. The waves get squashed in the direction of motion and stretched in the opposite direction.





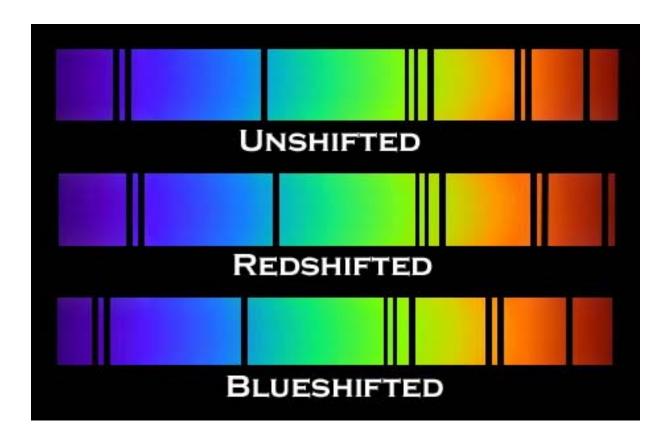

Source standing still

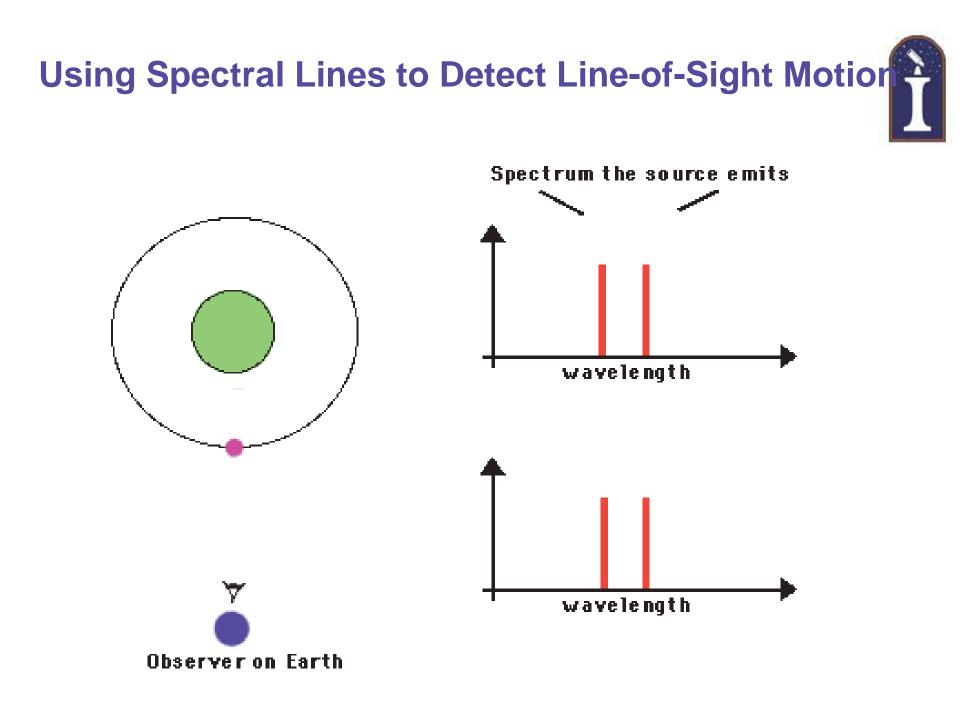
Source moving to right

### The Doppler Effect

The amount of the shift in wavelength depends on the relative velocity of the source and the observer



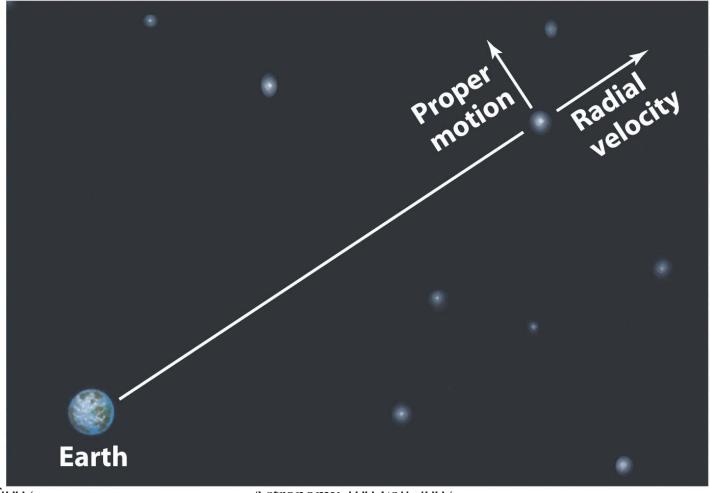




Astronomy 100 Fall 2003

### Applying Doppler Shift to Light



We can use the Doppler shift as a shift in the wavelength of spectral lines to determine the speed of the source of light– either **toward** or **away** from us.






http://cosmos.colorado.edu/astr1120/lesson1.html Astronomy 100 Fall 2003

#### **Proper Motions vs. Radial Motions**

- Proper motion is the part of an object's velocity perpendicular to the line of sight
- The Doppler shift only gives us the line-of-sight motion, not the proper motion



Oct 27, 2003