

- 10) The title of every lecture is: "Man, Them Stars is Hot!".
- 9) His so called "telescopes" are really just paper towel rolls covered in aluminum foil.
- 8) To illustrate the vastness of the universe, he makes everybody walk to De Moines.
- 7) Thinks he's married to the overhead projector.
- 6) Your grade is based entirely on how many ping-pong balls you can fit in your mouth.
- 5) His so called Drake Equation video is really just an old episode of Alf.
- 4) He makes everyone wear a soup pot on their head to protect the class from "Klingon mind control lasers".
- 3) About 90% of all classes involve dressing monkeys up to look like Jan Oort.
- 2) When you go to his office hours he is always hiding under the desk so that the "space squirrels" can't get him.
- 1) The only observing advice he ever gives is, "Keep an eye out for the mothership."
 - Oct 22, 2003

Astronomy 100 Fall 2003

Outline

- Light. What is a spectrum?
- Infrared Light
- The windows of the atmosphere.
- All you wanted to know about telescopes, but were afraid to ask.
 - Light gathering
 - Resolution
 - Magnification
- Reflectors
- Refractors

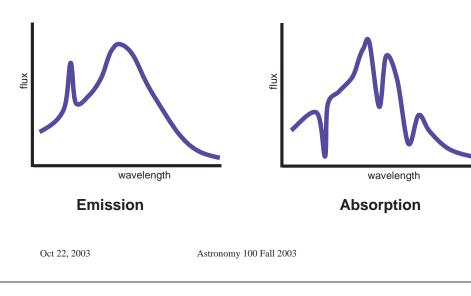
- <u>Next homework due Oct 24th this Friday at</u> <u>11:50 am.</u>
- <u>There will be another make-up nightime</u> <u>observing session in November. Stay tuned.</u>

Oct 22, 2003

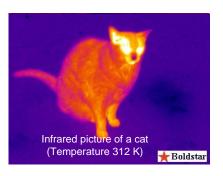
Astronomy 100 Fall 2003

Last Time: *Decoding Starlight*

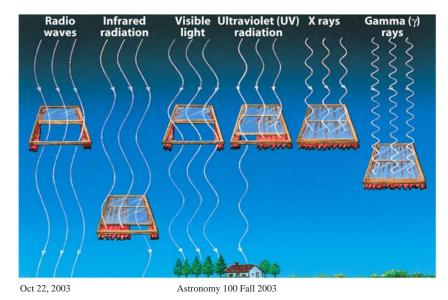
Light is an Electromagnetic Wave


- Wavelength $\lambda = color$
- Intensity = *brightness*

The spectrum


The "spectrum" of a light source also refers to the fractional contribution of all of the different wavelengths to its total light output.

Blackbody Radiation


- Light that objects emit because of their temperature is called **blackbody radiation**
- Blackbody radiation is composed of a continuous spectrum of wavelengths
- The **hotter** an object gets, the **more intense** and **shorter wavelength** (bluer) its blackbody radiation becomes

Visible-light picture of a stove element (Temperature ~ 400 K)

The atmosphere absorbs some wavelengths and not others

Glowing Bodies

Ì

- So, everything we know is in fact giving off light– as long as it has a temperature, it is glowing.
- The higher the temperature the shorter the wavelength it glows in– compare the person in the bottom left (near infrared) and a light bulb (in the visible).

Oct 22, 2003

http://www.x20.org/thermal/thermal_weapon_sight_TTWS320.htm Astronomy 100 Fall 2003

Oct 22, 2003

The Electromagnetic Spectrum We need telescopes to observe **Starlight** • Electromagnetic waves can have THE ELECTROMAGNETIC SPECTRUM wavelengths outside of visible range • Astronomical objects usually emit light at many wavelengths • Need telescopes which work at these wavelengths Oct 22, 2003 Astronomy 100 Fall 2003 Oct 22, 2003 Astronomy 100 Fall 2003 **Telescopes: Telescopes Requirements** • A **telescope** collects light • The larger the **aperture**, the more light can be collected in a given amount of time • Need to gather as much light as possible 5 • Extract maximum possible information Aperture • Form image Take spectrum •

Telescope Functions 1. *Light Gathering*

- Top priority since most celestial objects are dim
- Collect, concentrate light
- Telescope is "light bucket"
- Key: collecting area
- Human eye– few mm,
- Keck telescope- 10 m
 - 10 million times larger than eye
 - Can see things 10 million times fainter than eye can!

Telescope Functions 2. *Resolution*

Want to reveal details of objects

Angular resolution:

- Measures finest detail that is not smeared out
- Smallest angle for which two stars aren't smeared together to one
- e.g., human eye resolution = 1 arc min = 1/60 deg
- Hubble telescope resolution < 0.1 arc sec (1 arc sec = 1/60 arc min = 1/3600 deg)

Oct 22, 2003

Astronomy 100 Fall 2003

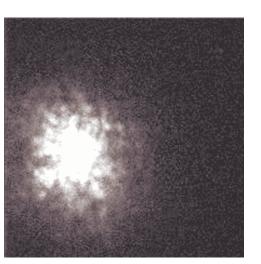
Telescope Functions 3. *Magnification*

make image larger

often least important issue

• no good to magnify blurry image

Oct 22, 2003


Astronomy 100 Fall 2003

2. Resolution– Twinkle, Twinkle, Little Star

Note: turbulence in the atmosphere "jiggles" image

- As seen from ground: star "twinkle"
- Additional smearing for ground-based telescopes

Size Matters

- All of telescope functions
 - Light collecting
 - Angular resolution
 - Magnification
- **Improve** as the **diameter** of the scope– its lens or mirror– **increases**
- <u>Bigger is better!</u>

Oct 22, 2003

Telescope Types

Astronomy 100 Fall 2003

Ì

•Optical (visible light)

- Refracting
- Reflecting
- •Radio, infrared, ultraviolet
 - Reflecting

•X-ray

• Reflecting (grazing incidence)

Focusing

For distant objects: light rays arrive in parallel

Telescope job:

- \checkmark collect rays over large area
- \checkmark focus to a point
- \checkmark then re-straighten over smaller area: brighter

Oct 22, 2003

Astronomy 100 Fall 2003

Refracting Telescopes

Refraction

- Bending of light rays
- when go from air to water, air to glass, etc.

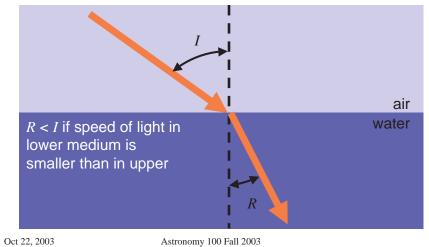
Lens

- Curved glass
- Light bent to focus

Problems:

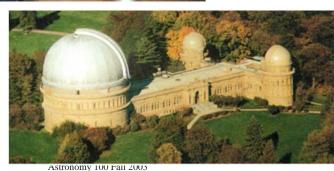
- Spherical aberration
 - Spherical lens gives imperfect focus
- Sag
 - Large lens distorted as hangsLimits lens size
- Limited wavelengths

The Mighty UIUC 12-inch refractor

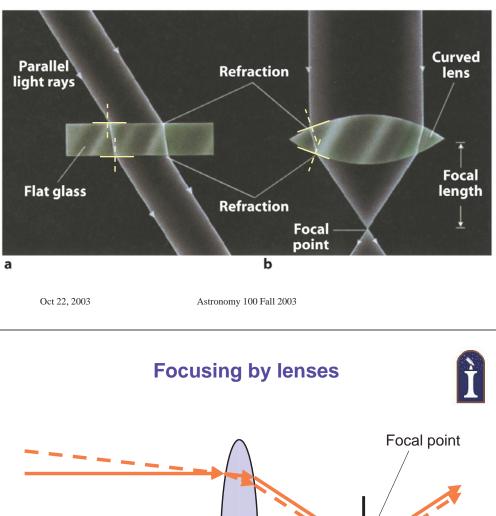


Refraction

Ì

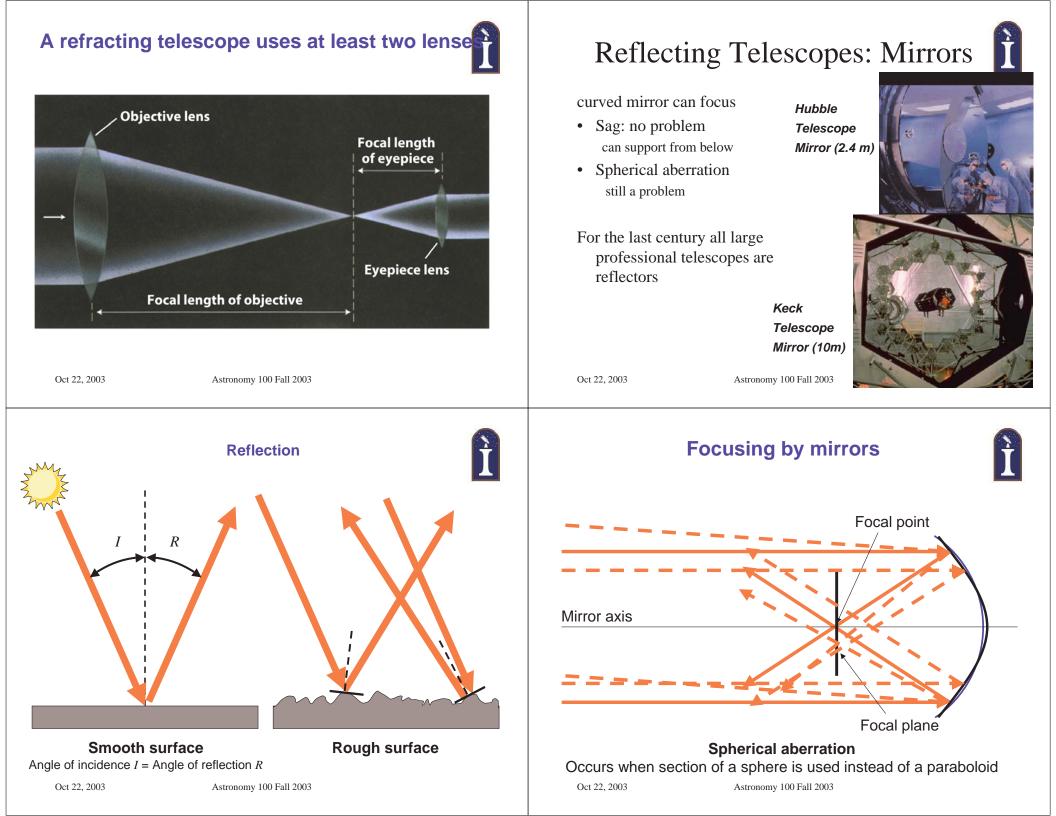

- Light travels more slowly in transparent materials than it does in vacuum
- When passing from one medium to another (e.g. air to water), light is bent (refracted)

Yerkes Observatory, Williams Bay, WI



- ► 40-inch refractor
- ► Completed 1897
- Still largest refractor in the world

Refraction by plates vs. by lenses

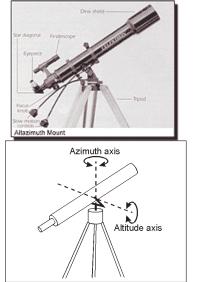

Ì

Lens axis Focal plane

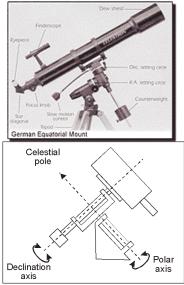
Astronomy 100 Fall 2003

Oct 22, 2003

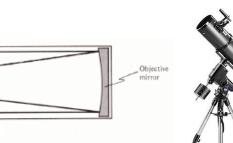
Keck Observatory, Mauna Kea, HI

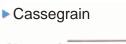

- Twin 10-meter reflectors
- Completed 1993 & 1996
- Largest reflectors in the world

Oct 22, 2003


Astronomy 100 Fall 2003

Telescope mounts


Altitude-azimuth (alt-azimuth)


Equatorial

Reflecting telescope designs

Objective mirror (with hole in center)

Eveniece

Plane mirro

Newtonian

Prim focus

foeu mirrow Astronomy 100 Fall 2003 Oct 22, 2003

Light Detection

Once light collected need detector

human eye

- least sensitive
- no permanent record

photographic film


- telescope as camera •
- accumulates light: see dimmer objects •
- gives permanent record ٠

Electronic "film" (CCD)

- much more sensitive •
- detector of choice! .
- all modern professional astronomy done this way ٠
- bonus: digital data great for computers! ٠

Oct 22, 2003

Astronomy 100 Fall 2003

Hubble Telescope CCD

Morehead Planetariumstronomy 100 Fall 2003 Oct 22, 2003

"Invisible" Astronomy

Want to measure all EM radiation

• not just visible light

ex: radio waves

- emitted by planets, stars, gas
- measure with "radio telescopes" •
- large radio antennas ٠

also X-rays, high-energy gamma-rays

- Can't do this on ground •
 - absorbed in the atmosphere
- Have to go to space
- Use satellites in orbit •
 - With detectors made of lead, crystals

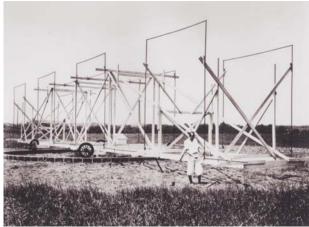
Oct 22, 2003

Astronomy 100 Fall 2003

Radio telescopes

Pioneering work by Grote Reber (died 2002)

Oct 22, 2003



Radio telescopes

First detection of cosmic radio sources by Karl Jansky at Bell Labs (1932)

Oct 22, 2003

Astronomy 100 Fall 2003

Arecibo Observatory, Puerto Rico

Oct 22, 2003

Astronomy 100 Fall 2003

Very Large Array, near Magdalena, NM

Oct 22, 2003

Astronomy 100 Fall 2003

BIMA

A millimeter array of telescopes owned and operated by UC Berkeley, UIUC, and UMd in Hat Creek, California. Wavelength of 3 millimeters – frequency of 115 GHz. Works night and day. Why?

Oct 22, 2003

Astronomy 100 Fall 2003

BIMA

BIMA

Oct 22, 2003

Astronomy 100 Fall 2003

Oct 22, 2003

Astronomy 100 Fall 2003

