• Homework #3 is due Friday at 11:50am! • Nighttime observing has 10 more nights. Check the webpage. • 1st exam is October 10th— 2 weeks from Friday. #### Outline - Back to Atoms—for fun - The Earth as a Planet. - magnetic field - atmosphere - Aurora - Craters - The Death of Barney - Checking out the Moon #### Atoms in the Earth - 1 grain of sand $-\approx 10^{19}$ atoms (about 1 mg) - Weight of Earth– 6.0 x 10²⁴ kg • That is $$\frac{6.0 \times 10^{24}}{10^{-6}} = 6.0 \times 10^{30}$$ Pieces of sand. How many atoms? $$6.0 \times 10^{30} \bullet 10^{19} \approx 10^{49}$$ #### Atoms in the Solar System - 1 grain of sand $-\approx 10^{19}$ atoms (about 1 mg) - Weight of Solar System— 2.0 x 10³⁰ kg • That is $$\frac{2.0 \times 10^{30}}{10^{-6}} = 2.0 \times 10^{36}$$ Pieces of sand. How many atoms? $$2.0 \times 10^{36} \bullet 10^{19} \approx 10^{55}$$ #### Atoms in the Universe - 1 grain of sand $-\approx 10^{19}$ atoms (about 1 mg) - Atoms in Solar System— 10⁵⁵ • In 2nd lecture we said about 10²² stars • How many atoms in observable universe? $$10^{55} \bullet 10^{22} \approx 10^{77}$$ Our rough estimate is not too far off. But, 10^{79} is more precise. # Atoms in the Observable Universe approximately: | 1 | 1
<u>H</u>
1.008 | 2
IIA
2A | | | | | | | | | | | 13
IIIA
3A | 14
IVA
4A | | 16
VIA
6A | | He
4.003 | |---|--------------------------|---|----------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|---| | 2 | 3
<u>Li</u>
6.941 | 4
<u>Be</u>
9.012 | | | | | | | | | | | 5
<u>B</u>
10.81 | 6
<u>C</u>
12.01 | 7
<u>N</u>
14.01 | 8
<u>O</u>
16.00 | 9
<u>F</u>
19.00 | $\frac{\overset{10}{\text{Ne}}}{\overset{20.18}{}}$ | | 3 | 11
<u>Na</u>
22.99 | $\frac{\overset{12}{\text{Mg}}}{\overset{24.31}{}}$ | 3
IIIB
3B | 4
IVB
4B | 5
VB
5B | 6
VIB
6B | 7
VIIB
7B | - | 9
V]
 | | 11
IB
1B | 12
IIB
2B | 13
<u>A1</u>
26.98 | 14
<u>Si</u>
28.09 | 15
<u>P</u>
30.97 | 16
<u>S</u>
32.07 | 17
<u>C1</u>
35.45 | 18
Ar
39.95 | | 4 | 19
<u>K</u>
39.10 | 20
<u>Ca</u>
40.08 | 21
<u>Sc</u>
44.96 | 22
<u>Ti</u>
47.88 | 23
<u>V</u>
50.94 | 24
<u>Cr</u>
52.00 | 25
<u>Mn</u>
54.94 | 26
<u>Fe</u>
55.85 | 27
<u>Co</u>
58.47 | | | 30
<u>Zn</u>
65.39 | 31
<u>Ga</u>
69.72 | | | | 35
<u>Br</u>
79.90 | 36
<u>Kr</u>
83.80 | | 5 | 37
<u>Rb</u>
85.47 | 38
<u>Sr</u>
87.62 | 39
<u>Y</u>
88.91 | 40
<u>Zr</u>
91.22 | 41
Nb
92.91 | 42
Mo
95.94 | 43
Tc
(98) | Ru
101.1 | 45
Rh
102.9 | | 47
Ag
107.9 | | 49
<u>In</u>
114.8 | $\frac{50}{\text{Sn}}$ 118.7 | 51
Sb
121.8 | - | 53
<u>I</u>
126.9 | 54
<u>Xe</u>
131.3 | | 6 | 55
<u>Cs</u>
132.9 | 56
<u>Ba</u>
137.3 | 57
<u>La</u> *
138.9 | 72
<u>Hf</u>
178.5 | 73
<u>Ta</u>
180.9 | 74
<u>W</u>
183.9 | 75
<u>Re</u>
186.2 | 76
Os
190.2 | 77
<u>Ir</u>
190.2 | 78
<u>Pt</u>
195.1 | 79
<u>A u</u>
197.0 | 80
Hg
200.5 | 81
<u>T1</u>
204.4 | 82
Pb
207.2 | 83
<u>Bi</u>
209.0 | 84
<u>Po</u>
(210) | 85
<u>At</u>
(210) | 86
Rn
(222) | | 7 | 87
<u>Fr</u>
(223) | 88
<u>Ra</u>
(226) | 89
<u>Ac</u> ~ | 104
<u>Rf</u>
(257) | 105
<u>Db</u> (260) | 106
Sg
(263) | 107
Bh
(262) | 108
<u>Hs</u>
(265) | 109
Mt
(266) | 110 | 111

0 | 112 | | 114 | | 116 | | 118 | #### Earth's Magnetic Field - As you know from using a compass, the Earth has a magnetic field. - We believe that the convection of the molten iron outer core and the Earth's rotation, creates an electrical current. An electric current produces a magnetic field. - The "North" of the Earth is slightly offset. - It irregularly flips direction—last time was 600,000 years ago. - It protects the Earth from energetic particles— Van Allen Belt #### Magnetic North Magnetic North can move as much as 40 meters a day. #### Aurora from Space When the Van Allen belts overload with charged particles, they leak through at the poles and cascade down in the Earth's upper atmosphere- sort of like a neon sign - Atmosphere is essential to live, made from Nitrogen and Oxygen—rare in other planets atmosphere - However, this is the Earth's 3rd atmosphere - First was hydrogen and helium from formation - Second was from volcanoes— carbon dioxide and some nitrogen (more like Venus) - Water helped dissolve the CO₂, and we arrived at the atmosphere we have today (thanks to plants) ### Temperature with Altitude Does it... - 1. Increase - 2. Decrease - 3. Stay about the same (to within 10%) until space #### Layers of the Atmosphere - Ozone is O_3 three oxygen atoms bound together: created by sunlight - Absorbs solar ultraviolet light - Ozone layer (40 km thick so maybe region) has an increase in temperature - If at the same density as near the surface only a few mm thick - Human-made chemicals deplete the ozone layer— This is bad! • What happened to the Earth's first atmosphere—hydrogen and helium? Remember Escape Velocity? the atmosphere is a result of a competition: heat vs gravity #### Gas atoms in random motion - hotter = faster - at each temperature, heavier atoms slower than lighter atoms http://www.chem.uci.edu/education/undergrad_pgm/applets/canonical/canonical.htm #### Planetary Atmospheres #### **Gravity** - What comes up sometimes comes down - Example: pop fly: gravity vs inertia, gravity wins - But faster launch = go higher where gravity weaker #### If faster than a critical speed - leave and never fall back down - escape speed - Earth: $v_{esc} = 40,000 \text{ km/hr} = 25,000 \text{ mph}$ - pop fly with this speed does not come back: - rocket! - Jupiter: $v_{esc} = 150,000 \text{ km/hr} = 94,000 \text{ mph}$ Bottom line: different outcomes in gravity vs heat struggle For Earth and the inner planets Hotter: H, He atoms faster than escape speed "leak" away = "evaporate" #### Moon-Near Side / Far Side ftp://seds.lpl.arizona.edu/pub/images/planets/moon/moon.gif http://antwrp.gsfc.nasa.gov/apod/ap981008.html #### Earth as a Planet-Craters #### Question: If the Moon is so cratered, why are there so few craters on the Earth— why weren't you jumping craters on your way to 100 Greg Hall? #### Earth's Craters Manicouagan Crater in Quebec, Canada– 100 km wide http://www.unb.ca/passc/ImpactDatabase/images/manicouagan.htm #### Earth's Craters Clearwater Lakes also in Quebec, Canada— 26 km wide (290 Million years ago) #### Earth's Craters In 1908, a 75 meter meteorite 8 km above the ground of the Tunguska region of Siberia. Trees were incinerated in a 14 km radius from ground zero and were knocked over in a 40 km radius. If this had occurred over a heavily populated area, the effect would have been catastrophic for the people living #### Earth's Craters—Tunguska Compare to the city of Rome. Big explosion. Yellow: area of charred trees. Green: area of felled trees Equivalent to 40 megatons of TNT # Earth's Craters— Meteor Crater Near Winslow, Arizona. Occurred 50,000 years ago with 50 m meteor struck ground at 25,000 mph. As much energy as 20 megaton hydrogen bomb. #### Closer to Home - March 26th, 2003 - Park Forest,IL - Through roof, hit printer, hit wall http://antwrp.gsfc.nasa.gov/apod/ap030506.html #### What Killed the Dinosaurs? With all of the evidence of large craters perhaps that contributed to the mass extinction of Dinosaurs. The real reason dinosaurs became extinct #### The K-T Boundary Known mass extinction event between the Cretaceous and Tertiary periods. Not the only one, but the biggest 75% of all species (on land and sea) suddenly were extinct. This was known for 100s of years. #### The Iridium Layer - 1979 it was announced that a layer of Iridium-rich material was found in numerous places in the world - Iridium is an element that is much more common in asteroids or comets than in Earth's crustal rocks - This later was deposited 65 million years ago. #### Hmm... These data suggest the impact of a large object with the Earth 65 million years ago. #### Evidence - 195 km diameter crater in Mexico— Chicxulub Crater under the Yucatan - Estimated that it is 65 million years old http://antwrp.gsfc.nasa.gov/apod/ap000226.html # Chicxulub Impact 65 Million Years Ago Paleo-Land Sea Submerged Continent ** Sampled Ejecta #### **Bad Day!** What is the most distinguishing feature of the Moon? ## What do most Craters look like? - Notice how they are mostly circular in shape. - What does that imply about how they were created? http://images.jsc.nasa.gov/iams/images/pao/AS11/10075255.jpg # Impact Craters - Central peaks inside the crater - So much compression initially, the ground rebounds #### Maria - Perhaps next most obvious feature is the dark areas on the Moon - Singular is Mare (Sea in Latin)— originally thought to be bodies of water http://www.lpi.usra.edu/expmoon/Apollo17/A17metric2432.gif #### Maria Sea of Tranquillity www.lpi.usra.edu/expmoon/Apollo17/A17metric2432.gif