
- Homework #2 was due today at 11:50am! It's too late now.
- Planetarium observing is over.
- Solar observing is over.
- Nighttime observing starts next week.

Sept 19, 2003

Astronomy 100 Fall 2003

Question of Scale

• Images of all planets (from space missions), with the correct scaling.

http://www.jpl.nasa.gov/galileo/sepo/education/nav/ss2.gif

Outline

- Switch Gears– Solar System Introduction
- The Planets, the Asteroid belt, the Kupier objects, and the Oort cloud objects.

Sept 19, 2003

Astronomy 100 Fall 2003

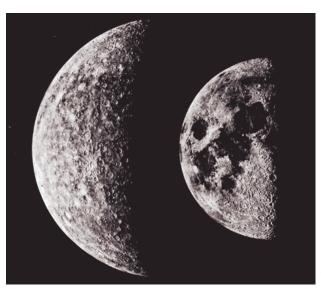
Planets Dance

http://janus.astro.umd.edu/javadir/orbits/ssv.html

Sept 19, 2003 Astronomy 100 Fall 2003

Sept 19, 2003

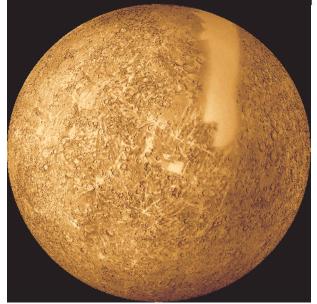
Facts of the Solar System


- Ì
- Mass of solar system: yes, mostly in the sun, but outer planets more massive than inner
- Orbital motions in solar system are counter clockwise in a flattened system (disk)
- Orbits are actually close to circles, except Mercury and Pluto
- Chemical analysis of meteorites shows condensation sequence—variation of composition with distance from Sun

Sept 19, 2003

Astronomy 100 Fall 2003

What's this Picture of?


Sept 19, 2003

Astronomy 100 Fall 2003

http://www.whfreeman.com/discovering/DTU/EXMOD36/F3

Inner Planets: Mercury

- Closest planet to Sun-0.38 AU.
- Similar to Moon– smaller than Ganymede or Titan.
- Reaches its greatest angular separation from the Sun on Sept. 27th (rises 1 hr 20 mins before the Sun) easily visible at pre-dawn sky. Look for it below Jupiter.

Astronomy 100 Fall 2003

http://www.jb.man.ac.uk/public/nightsky.html

Inner Planets: Venus

Ì

- 0.72 AU from Sun
- Similar in size and mass to Earth.
- Thick clouds make it the hottest planet.
- Often called the morning star or the evening star.
 3rd brightest object in the sky.

http://antwrp.gsfc.nasa.gov/apod/ap960923.html

Sept 19, 2003

Sept 19, 2003

Inner Planets: Surface of Venus

Inner Planets: Earth as a Planet

Sept 19, 2003

Astronomy 100 Fall 2003

http://pds.jpl.nasa.gov/planets/choices/earth1.htm

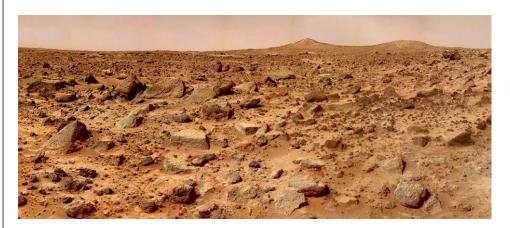
Sept 19, 2003

Astronomy 100 Fall 2003

http://nssdc.gsfc.nasa.gov/photo_gallery/photogallery-

Inner Planets: Mars

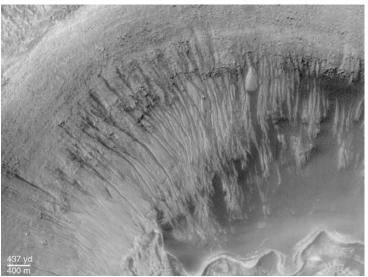
- 1.52 AU from Sun
- Only planet whose surface features can be seen from Earth-based telescopes.
- Some surface features seen from spacecraft suggest that there was once flowing water on Mars.



Astronomy 100 Fall 2003

http://www.seds.org/nineplanets/nineplanets/mars.html

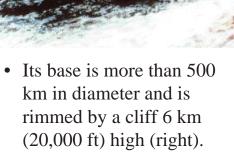
Mars: Surface



http://www.grc.nasa.gov/WWW/PAO/html/marspath.htm Astronomy 100 Fall 2003

Mars: Surface– Evidence for Water

Sept 19, 2003


Astronomy 100 Fall 2003

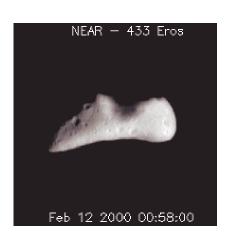
http://antwrp.gsfc.nasa.gov/apod/image/0006/marsnewton_mgs_big.jpg

Mars: Olympus Mons

• The largest mountain in the Solar System rising 24 km (78,000 ft.).

Sept 19, 2003

Astronomy 100 Fall 2003


http://hyperphysics.phy-astr.gsu.edu/hbase/solar/marsoly.htm

Junk? Asteroids-- Eros

- Between Mars and Jupiter, there are millions of asteroids ranging in size from dust to 900 km in size.
- Eros is actually labeled a near-Earth asteroid, as its orbit brings it close to Earth.
 33 x 13 x 13 km in size.
- Semimajor Axis: 1.458 AU

Sept 19, 2003

Jupiter-Big Boy

- 5.2 AU from Sun
- By far the largest and most massive planet.
- No solid surface. The gas just gets denser as we get deeper.
- 90% Hydrogen and 10% Helium with traces—like the early solar system.
- Has 61 known moons.

http://www.ast.cam.ac.uk/hubblepics.

http://near.jhuapl.edu/iod/20000222/index.html

Astronomy 100 Fall 2003

Sept 19, 2003

Jupiter

http://www.solarviews.com/raw/jup/vjupitr5.mpg

http://www.solarviews.com/raw/jup/vjupitr2.mov

Sept 19, 2003

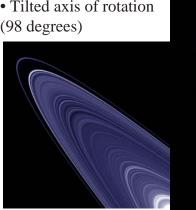
Astronomy 100 Fall 2003

Outer Planets: Saturn

- 9.54 AU from Sun
- The Lord of the Rings
- Ring has gaps

Sept 19, 2003

- Only planet less dense than water
- Broad atmosphere banding is similar to Jupiter



http://www.solarviews.com/cap/sat/saturn.htm

Outer Planets: Uranus

- 19.2 AU from Sun
- In 1977 the rings of Uranus were discovered.
- Tilted axis of rotation (98 degrees)

http://www.solarviews.com/eng/uranus.htm

Outer Planets: Neptune

Astronomy 100 Fall 2003

- 30.06 AU from Sun
- **Outermost Gas Giant**
- Methane gives it the blue color
- Has the fastest record wind speed of 2000 km/hr.
- Also has a faint ring system
- Seasons last 40 years!

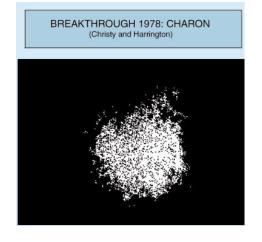
http://www.solarviews.com/cap/nep/neptunes.htm

Astronomy 100 Fall 2003 Sept 19, 2003

Sept 19, 2003 Astronomy 100 Fall 2003

Outer Planets: Neptune

Pluto



http://www.solarviews.com/raw/nep/vneptune.mov

• 39.53 AU from Sun

• Discovered in 1930 by telescope in AZ.

• A blob was noticed in 1978 that circled Pluto every 6 days. It proved that Pluto had a moon. Later named Charon.

Sept 19, 2003

Astronomy 100 Fall 2003

Sept 19, 2003

Sept 19, 2003

Astronomy 100 Fall 2003

http://www.solarviews.com/cap/pluto/hstpluto.htm

Pluto

• The only planet not yet visited by a spacecraft

- Has tilted and very eccentric orbit
- Moon Charon and Pluto always face each other
- Gravity pull is only 8% of Earth's.

Astronomy 100 Fall 2003

• Smallest Planet? Or not?

Pluto

http://www.solarviews.com/raw/pluto/vpluchar.mpg

http://www.solarviews.com/cap/pluto/hstpluto.htm

Sept 19, 2003

The Structure of the Solar System ...

- What are the furthermost solar system objects from the sun?
 - icy objects/comets

Furthermost objects form the Oort cloud

Sept 19, 2003

Astronomy 100 Fall 2003

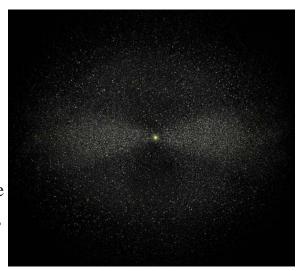
Outer: Comets

• Beyond orbit of Pluto, there are hundreds of billions of comets. Many of these are in a flat disk-like structure called the Kuiper belt. But more are in a spherical cloud further out called the Oort cloud.

Sept 19, 2003

Astronomy 100 Fall 2003

Space Junk? Comets



http://www.jpl.nasa.gov/comet/gif/pach15.jpg

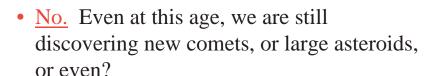
Oort Cloud

- Most comets located in the outer solar system
- Source of long term comets
- 100000 AU outward
- Edge of Sun's gravitational influence
- Spherical distribution, not only in ecliptic

http://www.etsimo.uniovi.es/solar/cap/comet/oort.htm

Sept 19, 2003 Astronomy 100 Fall 2003

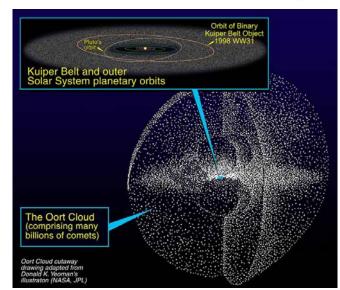
Example


Passing star perturbs Oort cloud

Sept 19, 2003

Sept 19, 2003

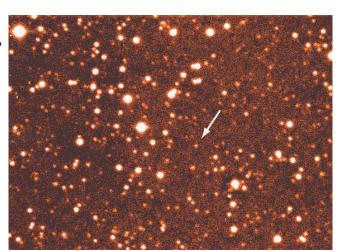
Astronomy 100 Fall 2003


Do we know of all of the Bodies in our Solar System?

Kuiper Belt

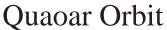
- Source of short term comets
- Doughnutlike in ecliptic plane
- 30-100 AU
- Can detect these objects!

Sept 19, 2003

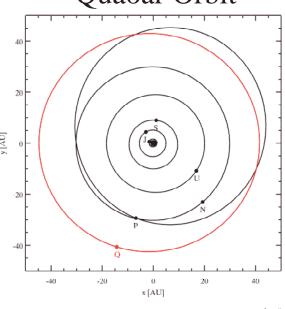

Astronomy 100 Fall 2003

New Data-- Kuiper Object Quaoar : Found 2002

Astronomy 100 Fall 2003

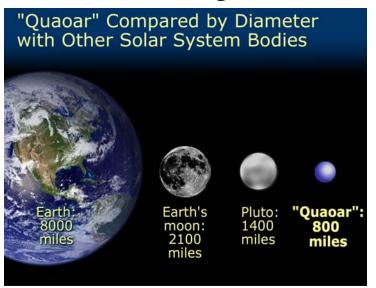


- Most recent and BIGGEST discovered yet
- pronounced kwa-whar
- diameter of about 800 miles (half of Pluto)
- 42 AU orbit



http://antwrp.gsfc.nasa.gov/apod/ap021009.html

Astronomy 100 Fall 2003 Sept 19, 2003



http://www.gps.caltech.edu/~chad/quaoar/
Astronomy 100 Fall 2003

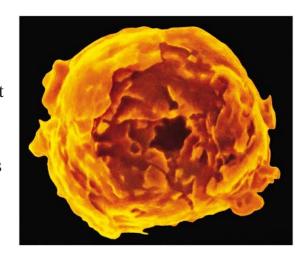
Quaoar Comparison

Sept 19, 2003

Astronomy 100 Fall 2003

Or Huya (Venezuelan Rain God)

- Discovered in March 2000, but only recently named.
- About 600 km in diameter (1/4 that of Pluto)
- 256 years to orbit


Sept 19, 2003

- Reddish in color
- Semi-major axis of 39 AU

Lots of Dust

- Interplanetary Dust is abundant and similar in composition to what we see outside of our solar system.
- About 2-20 microns in size— a human hair is 100 microns in diameter

 Sept 19, 2003
 Astronomy 100 Fall 2003
 Sept 19, 2003
 Astronomy 100 Fall 2003

Planet Comparisons

Planet Comparisons

TABLE II-1 Orbital Characteristics of the Planets

	Average dis	Orbital period	
	(AU)	(10 ⁶ km)	(yr)
Mercury	0.39	58	0.24
Venus	0.72	108	0.62
Earth	1.00	150	1.00
Mars	1.52	228	1.88
Jupiter	5.20	778	11.86
Saturn	9.54	1427	29.46
Uranus	19.19	2871	84.01
Neptune	30.06	4497	164.79
Pluto	39.53	5914	248.54

Sept 19, 2003

Astronomy 100 Fall 2003

TARIF II-2	Physical	Characteristics	of the	Planets

	Diameter		Mass		Average density
	(km)	(Earth = 1)	(kg)	(Earth = 1)	(kg/m ³)
Mercury	4,878	0.38	3.3×10^{23}	0.06	5430
Venus	12,100	0.95	4.9×10^{24}	0.81	5250
Earth	12,756	1.00	6.0×10^{24}	1.00	5520
Mars	6,786	0.53	6.4×10^{23}	0.11	3950
Jupiter	142,984	11.21	1.9×10^{27}	317.94	1330
Saturn	120,536	9.45	5.7×10^{26}	95.18	690
Uranus	51,118	4.01	8.7×10^{25}	14.53	1290
Neptune	49,528	3.88	1.0×10^{26}	17.14	1640
Pluto	2,300	0.18	1.3×10^{22}	0.002	2030

Sept 19, 2003

Astronomy 100 Fall 2003

Planet Comparisons

- Mercury, Venus, Earth, and Mars are crowded close to the Sun.
- The four large planets—Jupiter, Saturn, Uranus, and Neptune— are widely spaced
- Pluto tends to be in unusual space
- Mostly circular orbits, except Mercury and Pluto
- Orbits all lie in a plane
- Size varies considerably—smallest giant is 4 times larger than Earth, the largest inner planet
- Pluto is smaller than the 7 largest moons
- Gas giants are all massive

Planet Comparisons

- 4 inner planets have higher average densities
- Gas giants have low density— made from light elements
- Pluto is an oddity-rock and ice
- 3 groups of planets—inner (terrestrial), the gas giants (Jovian), and Pluto

Astronomy 100 Fall 2003

Only Mercury and Venus do not have moons

Sept 19, 2003 Astronomy 100 Fall 2003 Sept 19, 2003

Terrestrial vs. Jovian Planets

Terrestrial Planets	<u>Jovian Planets</u>	
Small size, low mass	Large and massive	
Dense, rocky solid surfaces	Low density, huge gaseous atmospheres	
Close to the Sun (within 1.5 AU)	Farther away (from 5.2 to 30 AU)	
Heavy gas atmospheres (N ₂ , O ₂ , CO ₂)	Lighter elements, H and He	
Slow rotators	Faster rotators, differential rotation	
Few satellites (3)	Many moons (over 60)	
Weak magnetic fields	Strong magnetic fields	
No ring system	Planetary rings	

Sept 19, 2003

Astronomy 100 Fall 2003

Atoms In Perspective

- Imagine yourself on a beach. You see the smallest grain of sand that you can find—stuck between your toes. How many atoms does it have? More than...
- 1. All the people in this room?
- 2. All the people in the Memorial Stadium during a Football game.
- 3. The population of Chicago.
- 4. The population of the World.

What is Stuff?

- One of the biggest questions has been: What is stuff made out of?
- We know that things can be broken into small bits that defines the stuff– Atoms.

Sept 19, 2003

